Introduction

My career at Keene State College has been nothing short of a great learning
experience. I complete many different mathematics courses that have helped me to
develop my knowledge. I really enjoyed how small my classes were because it allowed
me to feel comfortable so I was able to ask for help. I was also able to make many great
friends to collaborate with.

I have learned about the mathematicians in my History of Mathematics course
that have made math what it is today. I have learned that men are not the only people that
have made great contributions in mathematics. [ have also been able to conquer my fears
in classes that I have struggled with in my past. I was able to really understand what was
going on in geometry class because I put my mind to it. I learned about all the difterent
types of geometry that I had never heard of before. In hyperbolic geometry, a straight line
1s not a straight line anymore. In linear algebra I learned about matrices and how to use
them to find the determinate. In algebra and analysis I learned how to write proofs. I still
struggle with proofs but I can say that I have more confidence in my abilities now. Lastly,
my Issues and Trends class has helped me to understand why the education in the US is
lacking compared to the rest of the world. I feel from all that I have read and done in this
class it has helped to shape my philosophy of mathematics education. All the classes that

I have taken have helped me to feel more confident in my mathematical abilities.



Issues and Trends

In Issues and Trends, I learned a lot about mathematics education. We read a lot
of articles about approaches to teaching mathematics. All the reading that we did really
helped to shape my view and philosophy of mathematics education. I feel strongly that
student’s need to know the basics before they are ever given a calculator. We read many
articles that allowed me to understand that in elementary classrooms teacher’s let their
students use calculators because the teacher’s themselves do not know how to do the
math. 1 also learned that there are many different approaches to teaching. However, the
US is lacking in their mathematics teaching. Some of the reasons are because teachers are
not taking the time to understand the underlying concepts. The just teach in the way that
they were taught. We were able to see that the Japanese have a really great system of
teaching. Their teachers have a lot of time to collaborate and discuss mathematics. In the
US the teacher’s do not have the same amount of time and more time is spent going over
homework instead of learning new material. That is the reason why the US is so far

behind compared to where the Japanese are in their learning.



NCATE Standards
Math 475 - Issues and Trends in Mathematics Education

Assignment 1 addresses the following standard.

1.3 Build new mathematical knowledge through problem solving. (secondary and
middle)

| Juanita's Problem

Assignment 2 addresses the following standards.

1.4 Monitor and reflect on the process of mathematical problem solving
(secondary and middie)

3.4 Analyze and evaluate the mathematical thinking and strategies of others
(secondary and middle)

Write a synopsis review of “Using a Model Approach to Enhance Algebraic Thinking in the
Elementary School Curriculum” from Algebra and Algebraic Thinking in School
Mathematics, Seventieth Yearbook, National Council of Teachers of Mathematics.
Analyze and comment on the mathematical problem solving and strategies used by the
Singaporean students as they solved the problems within the article.

Assignment 3 addresses the following standard.

8.5 Participate in professionél mathematics organizations and use their print and on-line
resources. (secondary and middle)

Go to NCTM'’s website to your chosen teaching level (elementary school, middle school,
high school). Select an NCTM Focus Points Related Resource (elementary and middle
school) or an NCTM Resources (high school). Write a synopsis review of the resource
and give your reason for making the particular selection. If you cannot access it
electronically, go to Mason Library to retrieve it.

Assignment 4 addresses the following standard.

8.6 Demonstrate knowledge of research results in the teaching and learning of
mathematics. (secondary and middle)

Write a synopsis review of “An Investigation into the use of graphics calculators with
pupils in Key Stage 2” from the International Journal of Mathematical Education in
Science and Technology, 35 (2), 227-237. Discuss the research results and its
implications for the teaching and learning of mathematics.




Assignment 5 addresses the following standard.

9.10 Demonstrate knowledge of the historical development of number and number
systems including contributions from diverse cultures. (secondary)

Describe the development of the number systems of the Mayans, Chinese, and
Japanese. Compare and contrast their numeration systems with those of other modern
day cultures such as those from Central America, India, and Papua New Guinea.




Homework #1 — my philosophy and goals of mathematics education Abby Dutch

The reason I want to be a mathematics teacher is because I have my own
philosophy of how a classroom should be run. I have had mathematics teachers in the
past who have shaped my views and goals either in a positive or negative way. These
philosophies and goals will help me to create a warm environment in which learning is
encouraged and results yield increased knowledge.

According to my philosophy of mathematics education, being able to teach in a
way that the students have a more active role in class is very important. As long as
students are physically involved they are increasing their ability to understand concepts.
If the class only requires taking notes, many concepts are not understood because
students tend to zone out and not pay attention, missing crucial information. For many
students mathematics is their least favorite subject. These students do not see how they
will be able to use the math they are taught ever again. That is why it is important to use
real life problems and examples whenever possible in class because it encourages
students they are learning to benefit themselves.

It will also benefit students if classes are not always structured the same way
everyday. For students, the class becomes too predictable if all you do is take notes every
class. To the students class becomes less interesting, and there is no excitement. Even if
the slightest adjustment is made students will not know what to expect and incorporating
new activities gets students animated. It is my philosophy that something new needs to be
brought to the classroom to challenge student’s minds at least once a week. The

atmosphere of a classroom can also add to the excitement of a student and encourage



learning. A classroom has to have aspects displayed to encourage students and show them
what can be done with mathematics in everyday life.

Teachers are very important because they are the ones who shape our future. They
are role models that students look up to, and sometimes want to be like. It is important for
teachers to be passionate and show their students that they matter and are not just another
number in the classroom. Students are more apt to overcome struggles if they know that
their teacher is passionate and caring about their subject matter and students. Teachers
also need to be approachable so students feel comfortable asking for help. Having this
relationship with students allows those students who struggle to succeed.

Students should feel comfortable in the classroom but at the same time realize
they are held accountable for their actions. Each student will be disciplined if behavior
permits and consequences will be consistent for every student. That way they know who
is in control. It also creates a better learning environment for the students.

In order to create this great learning environment and follow my philosophy, I
have set goals for myself so that when I become a teacher I am able to stick by my views.
My goals are as follows:

1. Gain confidence when teaching in front of a class.

2. Try to relate to the students and understand who they are.

3. Make the classroom a comfortable place.

4. Incorporate different learning styles.

5. Be confident in what I am teaching by being prepared and organized with lessons.

6. Be strict so students know that what [ say goes.






7. To get at least one student to change their view of math being their least favorite

subject.

If I am able to follow my goals and adhere to my philosophy, I will be able to
accomplish the one thing [ have wanted since I was little, and that is to be a great teacher.
A teacher who is ready to continue on the path of learning so I can constantly be
increasing my knowledge which I will pass on to all the students I teach. Helping to

create more opportunities and improve lives.



Topic Paper- teaching using technology Abby Dutch
Teachers have a very important role in a student’s education. Their pedagogical
views can either make or break whether or not a student enjoys a subject. More
specifically this is what happens in many mathematical education classes, students lose
the desire to learn mathematics because of some teacher’s pedagogical strategies. That is
why I feel it is very important to involve technology as long as it is used at appropriate
times because it increases student’s excitement during class. Students enjoy those times
when they are doing something other than taking notes. For most students, the ability to
do hands-on activities increases their knowledge to retain the material being taught. That

is why I would incorporate Geometer’s Sketchpad into a geometry class, Excel into a

statistics class and the overhead projector with calculator hook up into an algebra class.

In geometry classes students sometimes have difficulties drawing their shapes by

“'hand, to scale, and grasping some of the harder concepts that deal with constructions and

proofs. When incorporating the use of Geometer’s Sketchpad into a class it allows
students to be actively engaged in their learning so tﬁey can visualize concepts and try
different scenarios that may be difficult to understand on the chalk board. The software
comes with tutorials th;t ;tudents can-de that will allow them to become more familiar
with the program. It is set up with a tool bar at the top of the screen which allows students
to write text, draw points, segments, shapes, and it has m¢§suring capabilities. By
incorporating the use of Geometer’s Sketchpad in lesson, there will be increased
excitement for the students when using the technology because it is not something that
they would be using all the time. Worksheets can be made for students to-do when using
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the program which can eliminate aiet—o{; distractions for students. However, the only



downfall of incorporating this software in the classroom is that it will take students a little
while to get acclimated Wiﬂ’}"—fi};ﬁf its capabilities and some students might struggle more
than others.

The use of Excel in a statistics classroom has the same downfall as Geometer’s
Sketchpad; it has many capabilities that students need to know. When you open Excel it
is set up like a spreadsheet. Students can input data into the boxes and then use its
graphing capability, the cart wizard, to produce a variety of graphs. Incorporating the use
of Excel into the classroom allows for students to graph data, calculate the mean, median,
mode, standard deviation, and even the correlation coefficient. Having students use Excel
in the classroom allows them to work on more difficult multi-step problems that would
take way too long to do out by hand. The software allows students to build on what they
have Icarned to calculate certain aspects of a problem that they can use when computing a
more challenging problem by hand. Excel can be used to reinforce student’s skills when
graphing and performing calculations and also allow them to cxplore new skills.

In an algebra class, the use of an overhead projector with a graphing calculator
and graphing calculators for all the students will help reinforee matcerial that have been
taught while exploring new concepts. The overhead and calculator attachment will
project the screen that the students should have on their calculators and the teacher is able
to show where buttons are on the calculator by pointing and verbalizing. Students will be
able to graph linear functions, make different graphs as well as perform basic
computations all on their calculators. The projector will help the students to start

discussions when interpreting graphs and recognize patterns. It allows the students to see

the larger picture and understand another method for finding the same result by hand.



However, the downfall is that some students want to take the easy route all the time when

performing computations, forgetting the basic algorithms.

All in technology is important to incorporate into lessons part of the time afterall <

the basics are learned or the help to teach the basics. It can be a very helpful tool in the
classroom. Technology like Excel, Geometer’s Sketchpad, overhead projectors, and
calculators can be used to reinforce the basics and expand on newer material. Although it
may make aspects of the class run more efficiently, it is very unreliable. Teachers always

need to be prepared in cases where the technology is not running properly.

i



Synopsis- NCTM Article Abby Dutch
The article I chose to read is titled “Iterated Function Systems in the Classroom.”
This article discussed Iterated Function Systems (IFS) and how they can be useful in the
classroom. This software allows students to do great things using fractal images. The
author also suggests that this software can be used in a variety of classrooms, ranging
from algebra to real analysis. The program emphasizes geometric transformations and
really allows students to grasp the concepts. It is also free for anyone to download at

invisiblegolg.com/math. At the site the author has a gallery of some of his student’s work

as well as many different downloads. The author suggests what a great geometric tool
this is because 1t allows you to produce art while having fun doing math. In order for this
program to be used in a classroom it is suggested that students become very familiar with
the program first. Then students can be asked to make S different kids of images and
answer questions relating to the images. There are endless questions to ask students in
order to assess what they are doing. The author also suggests having an image contest.
That way stt;dent’s a;e encouraged to spend a lot of time working on their assignments.
This program’s capabilities are endless when it comes to transformations and making

images.

Reaction-

I thought that this was an interesting article. I have never heard of anything like
this. I like that there is a free download so you can test it out. The reason I choose this
article is because in methods class we are working on a geometry unit. I know that I am

not that knowledgeable of technology that can be used when teaching geometry so I



thought this would be interesting. I think this could be a fun program for students because
it allows them to be creative while learning at the same time. The author even said that
the smartest kids are not always the ones with the most creative images. Those students
who might other wise struggle in class are suggested to do well with this software

package.



Synopsis- “Using a Model Approach...” Abby Dutch

The article titled “Using a Model Approach to Enhance Algebraic Thinking in the
Elementary Classroom” discussed different approaches to solving word problems using
models as a way of enhancing algebraic thinking. In Singapore they use this model
approach with their students in elementary school as a problem solving method. The
article then goes through some problems in which they use rectangles to represent these
word problems. These challenging word problems can be solved in different ways
depending on student’s knowledge. Singapore’s students know three different modeling
procedures, the part- whole model, the comparison model, and the change model.

The part-whole model is used to illustrate the situation when a whole is composed
of a number of parts. Students will be able to determine the whole once they are given the
part. The comparison model demonstrates the relationship between two or more
quantities when they are compared, contrasted, or described by differences. The last
model is the change model. This model provides representations of the relationships
between the new value of a quantity and its original value in a before and after situation.
These different models that Singapore uses in elementary school are used to help foster
algebraic thinking so that later on the students will be able to use a shortcut method to

solve these same problems.

Reaction-
I thought that this was an interesting article. I wish that I had learned these methods for
solving word problems. I know that today I still struggle with word problems because I

never learned a good method. I think using models are a good way of teaching students



word problems. I think it is important to build on students learning. This allows them to

see that you can solve a word problem in many different ways.



Problem Solving Homework

Juanita Simpson was in her math class. She was told to make a figure with
four thumbtacks, an elastic band and a piece of wood. She made the
following figure. Her math teacher measured some of the sides of her

figure and told Juanita to find the length of the side LM in mm. Can you
help her?

L

8cm

4cm

Solve this problem two different ways. Thoroughly explain your
solutions to this problem. What new mathematical knowledge
could be obtained by working on this problem'? Finally reflect on
the problem solving processes used in the two problems.



Problem Solving Homework- Juanita’s Problem Abby Dutch

Directions: Solve this problem two different ways. Thoroughly explain your solutions to
this problem. What new mathematical knowledge could be obtained by working on this
problem? Finally reflect on the problem solving processes used in the two problems.

Solution A: First we can consider the larger triangle with sides 8cm and 6cm. Because we
are given that this is a right triangle we can use the Pythagorean Theorem.

82 +6> =x*
64 +36 = x*
100 = x°
10cm =x

We can now consider the smaller triangle with sides 3cm and 4cm. Similarly we can use
the Pythagorean Theorem.

3 +47 =y’
9+16 =y’
25=y’
Sem =y

Since we want to find LM in mm we can add the values for x and the values of y.

x+y=LM
10+5=LM
15¢cm = LM

We now want to convert 15¢m to mm.

« 10mm

15¢m =150mm = LM

fem

Method B: First we can convert each of the measurements to mm from cm.

8cm* 10mm = 80mm
lem

6em* 20 _ 60mm
lem

dem* 10mm = 40mm
em

3cm* 10mm = 30mm

lem



We can now use what we know about triangles. Since we are given that both triangles are
right we can use the Pythagorean Theorem. First we can consider the larger triangle
which has sides 80mm and 60mm.

80° +60° = x’
6400 + 3600 = x>
10000 = x*

100mm = x

We can now use the triangle for the smaller triangle with sides 40mm and 30mm.

40% +30% = y*
1600 +900 = °
2500 = y?
50=y

Since LM is made up of x and y we can now calculate LM in mm.

x+y=ILM
100+50= LM
150mm = LM

Thus, both methods lead us to the same result for LM.
What new mathematical knowledge could be obtained by working on this problem?
The mathematical knowledge that could be obtained would be how to use the
Pythagorean Theorem by finding missing lengths. As well as learning to keep units and
recognizing when you need to convert to different ones.
Reflect on the problem solving process used in the two problems.
In the first solution I used what I knew about right triangles. Then once LM was
found in cm I used what I knew about conversions and converted LM to mm. In the

second solution I used what I knew about conversions first and then after that what 1
knew about right triangles to get LM in mm.



Synepsis- Japanese Lesson Study Abby Dutch

I read the two articles, “Challenges to Importing Japanese Lesson Study:
Concerns, Misconceptions, and Nuances,” and “A Practical Guide to Translating Lesson
Study for a US Setting.” These two articles discussed how the US is trying to incorporate
a Japanese method into US schools. This method is lesson study in which teachers work
together to design lesson plans for specific classrooms. The process begins with the
development of a lesson plan that is then tested by one teacher while the rest observe.
Once the lesson has been completed all the teachers revised the lesson to see if there are
any improvements that need to be made.

However, there are challenges associated with lesson study. One being that US
teachers’ do not have the time to plan each and every lesson for every teacher in the
school. So they will have to pick and choose what lessons they will work with. Teachers
will also have to teach in front of their peers. This could be nerve racking for many US
teachers. Of course with these challenges there are many benefits as well. Lesson study
will help teachers to focus on students’ work ability, reflect and adapt their own teaching
while focusing on students’ needs. Teachers are able to work together combining all their
knowledge into a single lesson. When teachers do this, they create many different ways to
obtain the same goal. In general the authors of both articles suggest how the

incorporation of lesson study is a good practice for US teachers to use.

Reaction-
I thought that these two articles were very interesting. I never knew that Japanese

teachers used lesson study. I think that if US teachers are able to incorporate lesson study



into their schools then there will be better teaching. When teachers work together more
ideas are generated and therefore better teaching happens. Also, when teachers work
collaboratively they are able to increase their understandings about topics because they
will work with other teachers who are stronger in an area they are not. In general 1
believe lesson study is a good idea. However, 1 do not think most US teachers have the

time to incorporate it into schools. So I do not know if US schools will stick with it.



Geometry

I was really scared to take Geometry because 1 am not an abstract thinker. T
worked that much harder and after completing the class it was very rewarding. I was able
to accomplish something that I felt was a weakness of mine and now I feel more
confident with my ability in geometry. In class I learned that there are many different
types of geometry other than Euclidean Geometry. [ was able to see what I always
thought was a strait line isn’t anymore. I learned how to use Geometer’s Sketch Pad, and
it really helped me to understand translations. I was able to work on improving my ability

to write proofs.



3- 9. On your Geometer's sketchpad worksheet with the
triangle, write a theorem ( assume that the side of the
quilateral triangle has length x) that expresses the
situation above and then prove it. (Hint: The proof
requires auxilliary lines and uses the area idea)

c CA=6.76cm
& AB =6.76 cm
CB=6.76cm
CA=AB=CB=K; Where K is a constant
m..ACB = 60.00°
m_BCA = 60.00° As you move point P upward segments DP and
D . _ . EP get smaller and FP gets larger. The addition
* . m--BAC = 60.00 of all the segments says the same. When you
E move point P down, segments DP and EP get
DP =265¢cm larger while FP gets smaller. The addition of the
& P EP =190 cm segments stays the same again.
FP=130cm
& & &
A F B DP+EP+FP = 5.85 cm

Theorem: AABC is an equalateral triangle. Point P is contained in AABC. EL@, PD L CA, and PF L AB. Prove DP + EP + FP = K, for some constant K.

Proof. Since we know that AABC is an equaliteral triangle we know that CA = CB = AB. We also know that m._CAB = m-CBA = m_ACB = 60°. We can draw
auxitlary line segment joing point P with B, point P with C, and point P with A. We can now consider the area of all the smaller triangles contained in AABC

e 1
because we know that PE L CB, PD L CA, and PFL AB so all the triangles have 90° angles. By E26(a) we are able to use the formula area = Eb*h' the areas

of all the smaller triangles follows.

1 1

Area ACPD = EDP *DC Area ACEP = EEP *EC
1 1

Area AADP = EDP*DA Area AAFP = EFP*AF
1 1

Area ABFP = EFP *F8 Area ABEP = EEP *BE

x2./3
We know that the area of all these smaller triangles are equal to the area of AABC. By E26(b), the area of the equaliteral triangle equals T So when we

x2,/3

add all the little triangles together they are suppose to equal

x2/3 1 1 1 1 1 1
=-DP*DC+ -DP*DA + —FP*FB + —EP*EC+ —FP*AF+ —EP *BE

4 2 2 2 2 2 2

x2./3 1

2 - 5(DOP"DC+DP*DA+FP “FB + EP "EC + FP * AF + EP * BE)

We can then simplify by taking out common terms.

X231

2 = 5((OP*DC+DP*DA)+ (FP*FB+ FP* AF)+ (EP *EC+ EP " BE)
x2/3 1

4= 5(OP(DC + DA) + FP(FB + AF) + EP(EC+ BE))

We can see that DC + DA = CA, FB + AF = AB, and EC + BE = CB. CA = AB = CB because they are the sides of A ABC which is an equaliteral triangle. So we
can call these sides x and replace x in the above equation.

x2,/3 1
2 = E(DP( x) + FP(x) + EP{(x))
Take out a common term.
X243 1
= —x (DP + FP + EP)
4 2

1
Multiply both sides by 2 and ~ and simplify.
X

X./3
—, =DP+FP+EP

Thus, DP + FP + EP is a constant because x equals the sides AABC and they will always remain the same no matter when you move paint P.
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9-4 (b). Graph the line y = 3x and then use the reflection capability to
reflect AABC about the lline to AA{B,Cy. Label the vertices and type in
the coordinates.in your sketchpad worksheet. Check that the vertices A4,
B4, and C4 found in part (a) correspond with those found on the
sketchpad worksheet. Print a copy of the worksheet and include it with 12 :
part (a). ‘ Y = 3x
10
8
6 ®
(-5, 9) ‘
C1 » e . - A1 ®
(0. 5)
A (3,4)
4 - s
B, (-43)
‘ 2
-10 -5 ‘ (5,0) 5 B
2
-4
* B -
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6-5.) For the lines [T and s, assume [T I 5. Determine the path from Ato I" to
(2 and then to B that is the shortest. Show the construction using the
appropriate transformation(s) on Geometer's Sketchpad. Use the thick line
dispiay for the path and the dashed line display for auxiliary lines. Then write
a proof to justify that your construction yields the shortest path.

A e
M
./M r
o \\
A .
\%\% 5
S
"“ o
F 2
- -

Solution: Reflect point A about line I to give point A", Reflect point B about Q to

give B'. We can draw A'B' and where A'B' intersects T we can label that point M__
and where A'B' intersects W we can now [abel that peint F. We can now draw AM,
MF and FB. We can see that AB' = the path fromAto Mo Qto B smc,e Aand A’ are
')tatlons and B and B’ are also rotations thus A=Aand B=B" X

We now want to consider a couple ofdlfferent cases.

Case 1: Assume there is another point O on I” such that point O is to the right of
point M as seen in the figure to the right. We can also assume that there is

anather point X on €2 such that point X is to the left of point F. We can draw
auxiliary lines AO. OX. and XB. We can now label the intersection of AO with AB'
point Y, iabel the intersection of A'B' and XY point Z, and label the intersection of
OX and YZ point G. We now want to show that A to M fo F to B is the shortest path.
We can now consider AYOG. By N9 (a) YO + GO > YG and similarly for AZXG, GX
+ ZX > GZ. From this we can see that the path of Ato O to X to B is greater than the
path from Ato M to F to B. Thus, path Ato M to F to B is the shortest path.

Case 2: Assume there is another point C on 1" such that point O is to the right of
point M as seen in the figure to the right. We can draw auxiliary lines AQ, OD, and
DB. We can now label the intersection of AQ with A'B' point E, and label the
intersection of A'B' and XY point G. We can now draw OF creating two triangles
AEOF and AGOF. First we can consider AEOF. By N9(a) EO + FO > EF. We can
now consider AGOF. By N9(a) GO + FG > FO but we already know EQ + FO > EF
$0 it rust be that GO + FG » EF. From this we can see that the path from Ato O to
D to B is greater than the path from A to M to F {o B. Thus, in both cases the path
from A {o M fo F to B is the shortest then this must be the shortest path from Ato I°
o Qand thento B.




14 -

12

10-3 (b). Consult the Geometer's Sketchpad tutorial and determine how to perform a
dilation. On a coordinate graph plot points A, B, and C and construct AABC. I se the
dilation capability to dilate A ABC with center and ratio computed in part (a). Print a
copy of the worksheet.

(-5.8,1) B . .
. . (3,6, 1) 6 - The coordinates of this image match the
points in part (a).

s A 2 « C(1,2,1)
-1,2,1)

c ‘ *D

' * 1 2,2, 1) ¢ ‘
-10 (-5,0,1) -5 ‘ ‘ 5

F
(-8,-1, 1)
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Linear Algebra

I really enjoyed linear algebra because algebra is my favorite. This class allowed
me to work hard at something I enjoy doing. I worked with matrices, finding
determinates, multiplying, and adding them. We had a project that we had to do during
the semester in which we picked a section from our text and taught ourselves how to
understand the concept. I was really excited about this assignment because it gave me the

ability to use what I knew and teach myself how to understand a concept all on my own.



MATH 231 Stanish e
May 3, 2007 S e - C
Final Exam Name: /}k/;f’ A

; o

You may NOT use your calculator to complete the following problems. Once you have completed
these problems, turn them in, and then you will receive the reminder of the exam on which you may
use your calculator.

1. (8 pts) Consider the following linear system:
X1 +x2—x3 =1
2x1—x2+Tx3 =8
~ X1 +X2—5x3 = =5
Solve the system by reducing the augmented matrix to reduced row-echelon form.
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2. (8pts) Letd = , B=111
(8 pts) [ 41 2 ] it
2 A3 L0
Calculate each of the following, if it is defined. ~
| a) 4B
~ 2 T -7
S R S
b) B4
(ljf'f:' Nt e Z’?:/Lg b,
c) A-C _
o -y . S
R
d) ¢’ -
= |
| ~1 0
L1 s
3. (4 pts) Find the determinant of each of the following matrices:
32 -1
a)d=| 50 2
00 3
- /; ‘5 5 L “! -+ O ,,,,, ‘—)
| o5 ]
lg — Z ! f,. 1\

;/5 20 1
1 -1 4 1

310
X

b) A=

2
,and C =.
-3
A

,\.%
8 4 25/0%
50 12 110+

0 13 —41{0 |
7 68 100 \0/
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You may use your calculator in any way on the following problems.
4. (10 pts) Consider the linear system

I
—_

2x1 + 3x;

i
~

3x) + 4x;
a) Write the linear system in the form Ax = b.

e =
P z

-
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c) Use Cramer’s Rule to solve the linear system. .
fro = :E rpt 0T T ‘
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4
a) find the characteristic equation

o, 1

21
5. (8 pts) For the matrix 4 = [ 3 :I
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c) find tfwwe;“c':orresponding eigenvector for one of the eigenvaiues.
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6. (8 pts) In each of the following, determine whether the set ¥ is a subspace of the vector space V.

Be sure to justify your answer.
a) ¥=R* W= {(xy):xisaninteger} s
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7. (4 pts) Determine whether the set § = {(1,3,0),(-1,4,2),(1,-1,5)} is linearly independent or

linearly dependent.

|
e
| O

8. (4 pts) Determine whether the set S = {(-2,5,0),(4,6,3),(1,5,0)} spans R>.
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9. (6 pts) Determine whether the set S = {1,x + 5,x? + x} is a basis for P,.
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10. (8 pts) Determine whether each of the following functions is a linear transformation. Be sure to

justify your answer.

a) T:R> - R* defined by T(x,y) =

w=1013

x+y,

J i

4x)
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11. (8 pts) Use the standard matrix to determine whether the linear transformation
T(x1,x2,x3) = (x1 — 2x2, x3, 4x| +x3) is invertible. If itis, find its inverse.

12. (4 pts) Let T(x,y) = (4x,y).
a) ldentify the transformation geometrically.

SEa

AR R AN

b) Graphically represent tha_transformation for an arbitrary vector in the plane.

AR

)

13. (6 pts) Let 4 and B be n x n matrices such that 4B is singular. Prove that either 4 is singular or B
is singular.




14. (6 pts) LetS = {u,v} be alinearly independent set in a vector space V. Let ¢ be a nonzero
scalar. Prove that the set T = {cu,cv} is also linearly independent.
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15. (8 pts) Writing Problem: In a sentence or two, explain each of the following concepts.
a) A system of linear equations is consistent.
J/ / 3 < 7 ! / { 3 4
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History of Mathematics

In the History of Mathematics class I learned a lot about the early mathematicians
and their contributions in mathematics. 1 did a project that helped me to understand that
there are women that have made big contributions in mathematics. All we hear about is
what men have done. I did not like that so I wanted to learn about what women have
done. I was very impressed to find that women have made big contributions like men but,
they are just not given the same recognition. Women earlier in history were not allowed

to do anything other than work in the kitchen. This was an interesting class.
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Algebra and Analysis

Algebra and Analysis was a very challenging class because it was abstract. The
whole class involved writing lots of proofs. 1 struggled with this class but I worked hard
to master writing proofs. 1 do not think that 1 have mastered proofs but I know my skills
are better now. I worked on a project during the semester to understand the proofs of pi
and Euler’s number. This project helped me to be able to interpret other people’s proofs. 1
worked with my group members to pick apart the meaning of the proofs. I feel that I

learned a method for writing proofs and a way for interpreting them.



Pi () and Euler’s number (¢)

Abby Dutch
Ryan Farnsworth
Torey Cutting
Algebra and Analysis
O. Johnson
11/14/07



When dealing with mathematics there are many simple and complex topics which
need to be explored and understood in order to use mathematics. For example, to fully
understand mathematics one must first master the topic of numbers. Numbers can take
many forms; they can either be positive, negative or even zero. In mathematics these
types of numbers are called integers. To further build upon the idea of integer, there are
numbers called rational numbers which fill in some of the gaps in-between the integers.
These numbers take the form of fractions and “nice” decimals. To be a terminating
decimal means have a place where the digits of the number come to an end. This now
leads us to numbers that are irrational. These special kinds of numbers are numbers in
which the decimal term does not terminate and can not be written as a fraction of
integers. Two specific examples of irrational numbers are pi (7 ) and Euler’s number
(e). These two irrational numbers are able to provide a value for two different concept
areas 1n mathematics and can be proved to be irrational.

When we look at the rational numbers versus the irrational numbers one can see a
major difference. As stated above, rational numbers have a “nice” decimal. We can look

at a rational number as a quotient. This means that a rational number can be written in
the form% where «a,b are integers. While it is in this form, the b value cannot equal
zero. A few examples of this can be seen in Table A1, which is found in the Appendix.
If a number cannot be written in the form % then it does not have a terminating decimal

and the number is then called irrational.
Contrary to the rational numbers, irrational numbers can be viewed as “never

ending”. Even though the values of irrational numbers are never ending, they are still



elements of the real numbers. However, an 1ssue then arises when we look at the

Value% . We can calculate %out in decimal form to be.3 . This decimal as we know is

never ending; the three repeats. But, since we can write the value of 3 in the form of
1. . . ) . . . a
3 it satisfies the requirement of being a rational number because it fits into the form;

This can be seen in Table A1, which is found in the Appendix. This leads us to two very
special irrational numbers that have two different histories.

Our first irrational number is pi (7 ). Pi represents the circumference of any circle
divided by its diameter [4]. Numerically written as 3.14159... This irrational number
comes from as far back as the ancient Babylonian, Egyptians, Greek, and Indian
geometers 1in which they calculated the area of a circle by measurement. Many
mathematicians had various approximations for pi. However, it was not until Archimedes
that the calculation of pi was formed. He used the Pythagorean Theorem to approximate
the area of a circle. He did this by finding the area of two regular polygons, one inscribed
and one circumscribed. Since the area of the circle is found between the two, this left for
an upper and lower bound. Knowing this Archimedes knew that this was not the value
for pi but rather an approximation of its limits. So Archimedes showed that pi was an

irrational number found between 3 —;— and 3 % [1]. We can now look at the proof of pi

and show that it is an irrational number.
Pi’s irrationality can be proven with the technique of proof by contradiction. In
Herstein’s proof of the irrationality of pi, he does just that. With this technique we are

going to assume something to be true, and later on prove the assumption is incorrect. For



the proof of pi’s irrationality we first make the assumption that pi is a rational and can

take the form of % Following this, a function is introduced. This function

: x"(a—bx)" . . , s
is f(x) = L(-g,;—@“ . This expanded out polynomial allows us to define integers within.

Then the proof looks at the symmetry property of f(x). To be more specific, one can find
that f(x) 1s the same as f (7 -x). So when you substitute 7 -x into the equation for x, one

would find that it is the same value as the original equation f(x). The reason for this is
. a -, .
because of our assumption thatz = 5’ The next part of Herstein’s proof deals with the

derivatives of f(x). He then uses the chain rule to differentiate the function and from this
he is able to draw the conclusion £ (x) = (1)’ f*(7 — x). From this the proof then
looks at the value of 7 (0)and /" (r). After doing out some work Herstein finds that

they are both equal to an integer for all nonnegative integers/. The proof then introduces

another function that is an alternating function of even derivatives. After doing more

work the proof uses a corollary that if u is a real number, thenlim*- = 0. Herstein comes

to a point where x is trapped between 0 and 1. Since x is an integer and there are no
integers between 0 and 1 we have a contradiction. Therefore, pi is an irrational number.

To see this proof please refer to the appendix.
Our second irrational number is Euler’s number ( ¢ ). The number ¢ is defined to

be the following limit as n goes to infinity of [1 + lj [5]. Euler’s number is equal to
n

2.7182... This number represents the base for natural logarithms. Euler’s number was

first introduction to mathematics by Napier in 1618. In his work on logarithms he used



¢ however, it was not really mentioned. As more mathematicians worked with
logarithms, e was finally discovered through the study of compound interest by Jacob
Bernoulli in 1683. He tried to find the limit of (1 + '/n)" as n goes to infinity. He used the
binomial theorem to show that the limit had to lie between 2 and 3 and this is how the
approximation for e came about. It was not until 1748 when Euler published /nfroductio
in Analysin infinitorum that he gave a full treatment of the ideas surrounding e. He

showed that ¢ = %+l+l+ L

MR .. [3]

This leads us to the proof that e is irrational. To prove that e is irrational we can

use a basic proof by contradiction. To do this we must assume that e is a rational number
a . . .
that can be expressed as e= 5 in which a and b are both integers. We can then see that

TR |
the proof defined ¢ as 1+ % + % + % +... Taking this equation and multiply it by b!

NI A ! v !
found the following formula, b!e = b!+{)—' + b + b +..+ o + b + b +...
o203 b (b+1)! (b+2)!

_ . . bt b b b . : .
Because b! e is an integer and b!+; + 5+§ +... +;)—' is an integer it must be that the

sum of the rest of the right side of the equation is an integer as well. Taking the sum of

1 1

the rest of the right side ! + + , +
(b+1) (b+1)b+2) (b+1)b+2)b+3)

... and replacing

1 1
G+ BrIf  (Be1)

b+2, b+3... with b+1 would obtain +... Thus, making the right

. . . : 1 1 1
terms larger and a geometric series on the right. Thus, its sum is- +(1 )=—.

(b+1) © (b+1) b

Therefore, b is larger than 1 because e is not an integer, so we have an integer between 0



and 1, this is the contradiction [6]. Therefore, eis an irrational number. To see this

proof of the irrationality of Euler’s e please refer to the appendix.

Since mathematics has many topics to explore, rational and irrational numbers are
only a tiny piece of it. The history of pi (7 ) and Euler’s number (¢) is fascinating to
follow. Many mathematicians have contributed to the history of these numbers. Without
this history the basic understanding of pi (7 ) and Euler’s number (¢ ) would not have
come about. One can take this history, analyze these numbers, and be able to prove them.
The proofs of pi (7 ) and Euler’s number (¢ ) being irrational are just a few of many
proofs that a mathematician should have an idea about, and understand the main
principals involved. By understanding that pi and Euler’s number are irrational, one is

able to have a better understanding of the broader world of mathematics.



Appendix

Table Al
Number Is it Irrational How it would
or Rational? look in the form
¢ ifit can be
b
written as such
7 Rational 7
1
3 Rational 1
3
ﬁ Irrational Can’t be done
e [rrational Can’t be done
/4 Irrational Can’t be done
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Appendix
Proof of e

The basic idea of this proof is to assume that the number in question is algebraic, and
then you arrive at a contradiction. The contradiction always takes the form of showing
that the assumption implies the existence of an integer between 0 and 1.
. , LI L
eisdefinedas 1+ —+—+—+...
o2 3

. . a . : :
Suppose e is rational, say € = . where a and b are integers. Then b! e is certainly an

integer. So multiply the equation for e by b!.
This gives us:

b! b! h! b!
ble=bl+ =+ +—+ — + + ..
1! bt b+ (h+2)

Now all the terms up to b!/b! on the right are integers, and the left side is an integer, so
the sum of the rest of the terms on the right must be an integer. This is:

! + ! + 1 +...
(b+1) (b+D)b+2) (b+1)(b+2)b+3)

Now if we replace b+2, b+3, ... by b+1 we make the terms on the right bigger, so the right
side is less than:

! + - ! + ] +...
(b+1) (b+1)° (b+1)

which 1s a geometric series. Its sum is:

1
(b+17(1 (b+n)_b

Note that b is certainly bigger than 1, since € is not an integer, and we have arrived at a
contradiction: an integer between 0 and 1.

This proof is taken from Ask Doctor Math -

. . S T Y & N T PR QU O ~ Sy A L2071 N -
htte://mathiorum.org/library/drmath/view/53910  hitnl
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e Proof of pi's irrationality
e History of e
o Proof of e’'s irrationality

History of pi
G

3.141

5926535

8979323846
2643383279502
8841971693993751

History of Pi ()
< |

o Pirepresents the circumference of any circle
divided by its diameter

* Numerically written as 3.14159...

o This irrational number comes from as far
back as the ancient Babylonian, Egyptians,
Greek, and Indian geometers in which they
calculated the area of a circle.

History Continued
. ]

o Many mathematicians had their tries with pi
however, it was not until Archimedes that the
calculation of pi was formed. He used the
Pythagorean Theorem to approximate the
area of a circle. In which he used upper and
lower bounds.

* So Archimedes showed that pi was an
irrational number found between 3 - and

10
35

Proof of 7T ‘s Irrationality

———
3.1415692654 ...




Herstein’s Proof of JT
< |
e Uses proof by contradiction.

e Introduces a polynomial to aid in getting the
desired outcome.

e Uses derivatives and integration.

o Uses inequalities to trap a variable between
Oand 1.

Pi’s Irrationality
O

e Assume pi is rational = pi = a/b
e The polynomial introduced is as foilows.

* f(x)= M > f(x)= uf;,"

n

e inthe equation all the a, are integers.

Pi’s irrationality
. |

o The proof then looks at the symmetry property, namely
f(x)=f( 7 -x)

o Then the proof uses differentiation.

e Then an auxiliary function is introduced

- With that the proof concludes that by using integration a variable
x, which is an integer, is between 0 and 1.

o We of course know this is not possible thus arriving at
the desired outcome

e Thus, piis irrational.

History of e
< ]

History of Euler’s Number ¢
. |

e Euler's number (e) is defined to be the following limit
as n goes to infinity of
SN
14— |
LA
e Euler's number is equal to 2.7182... This number
represents the base for natural logarithms

e Euler's number was first introduction to mathematics
by Napier in 1618.

History Continued
L]

¢ As more mathematicians worked with logarithms, was

finally discovered through the study of compound

interest by Jacob Bernoulli in 1683

He tried to find the limit of (1 + )" asn goes to

infinity. He used the binomial théorem to show that the

{imit had to lie between 2 and 3 and this is how the

approximation for e came about. He used e in his work

however it wasn't really mentioned.

o in 1748 Euler published work that gave full treatment
toe Heshowedthate=1 1 1 1+..

TR
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Proof of the irrationality of €

e To prove € is irrational, a basic proof by

contradiction is used.
1

e ¢isdefinedas i-p-i-i-
e Assume €is rational; thus e = ‘; where a and
b are both integers.

o Multiplying the definition of € by b! would get
the following;

topl ! l !
b!e=b!+%+£+.“+£+ b b

+
2 bl (b+1)! (b+2)!

o We know that »le is an integer and
! B b

-
! 2 2
[ 7 2’+. A

is an integer, thus it must be that the sum of
the rest of the right side is an integer as well.

e Taking the sum of the rest of the right side
! + L B
b+1) G+D)b+2) (B+IXb+2)D+3)
and replacing b+2, h+3... with b+1 would obtain
! + ! + ! +
b+l (p+1Y (G+1y
Thus, making the right side larger and giving us
a geometric series.

|
¢ So, the sumis
1 1 1

R T L

e Therefore, b is larger than 1 because ¢ is not
an integer, giving us an integer between 0 and
1; a contradiction.

e Thus, we conclude that € is irrational.

In closing...
. |

o We have looked upon how pi has come
about.

o We have seen that pi is irrational.
e We have looked upon the development of e.
o We have seen that pi is irrational.
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1.) Write an essay describing the parallels between F[x] and Z (up to and including
ideals and quotient rings)

When looking at F[x] and Z we are able to see many parallels considering their
differences. F[x] is a ring of polynomials with coefficients in F. Where as Z is the ;et of
integers, subject to the eight algebraic laws: commutative law of addition and
multiplication, associative law of addition and multiplication, additive inverse, additive
identity, and the distributive law. They parallel each other with it comes to being

commutative rings, fields, the g.c.d. and Euclidean Algorithm, Unique Factorization,
Ideals, Irreducible and f}g *h —)f’g or f‘h , as well as quotient rings.
The basic structure of F[x] and Z is the same. They are bothiﬁe‘id.s‘. To be a field

they both have to be a commutative ring R if every non- zero element, ¢ € R is a unit. So

in other words the commutative law for multiplication has to hold. For all integers a,b
element of R, ab = ba ; and for polynomials F[x], f(x),g(x) elements of R,
S (x)g(x) = g(x)f(x). As aresult that the two are fields they are also an integral domain

because they do not have any zero divisors. A zero polynomial has.no degree.

When it comes to the division algorithm, Z uses the absolute value and F[x] uses
the degree of polynomials. Since both Z and F[x] are rings they have a division algorithm
in which for integers, a,be N, there are integers ¢ (quotient), and » (remainder) such

thata = gb +r, with 0 <r <b. An example follows:

Let5,3¢ Z



By proposition 1.3 for polynomials which is very similar to the algorithm for integers. It

states let f, ge F[x] be non polynomials. Then there exists unique polynomials, ¢(x)and
r(x) such that f(x)=g(x)*q(x)+ r(x) where the deg(r(x)) m deg(g(x))or r(x) =0.
An example follows:

Let4x*+ 1, 2x +4 € F[x]

o . X + -

- f

RN

The two are very similar besides F[x] uses polynomials and Z is just integers.

This leads us to the Greatest Common Divisor or g.c.d. The g.c.d. of polynomials
may be constructed as in the case of integers, by applying the division algorithm
repeatedly. This process is called the Euclidean Algorithm for polynomials. The division
algorithm has elements in F[x]. The procedure of computing the g.c.d. for two integers

and the expression d = ma + n,1s the Euclidean Algorithm for integers. An example for

an integer and polynomial follows to show the similarities of the two:

ARTORN R A

[}
L 3
i
T
.
:

P ; o - B .
Pl _— EUE P . - T . E
7 = T ot v : — - d 2,



As you can see the two are very similar. They use the same form and the expression is
similar because one is a polynomial and the other is an integer. The existence of the g.c.d
and the Unique Factorization property of the integefs form the Euclidean Algorithm.

The Unique Factorization Property in F[x] states that every non-constant
polynomial in F[x] can be written as a product of irreducible factors; the resulting
expression is unique, except for rearrangement and nonzero constant factors. A non
constant polynomial f(x)eF|[x]is called irreducible if it cannot be expressed as a product
of non constant polynomials. So in other words the Unique Factorization in F[x] parallels
a polynomial for iﬁtegers prirne‘d; A product of irreducible factors for a given polynomial
~ is the same as a product of prime integers for a given integer. An example follows to
demonstrate this:

Y

. - . . . ) - Ny

M - »
N\, - N "
AT L -

Here we can see how the two parallel each other. Also if fis irreducible and {7/ g* h it

yields /g or g/h. The polynomials parallel the integers primed.
Another parallel come from the idea of ideals. Both Z and F[x] are ideals, if

I < Rnon empty of R if for all a,bel and reR,a + bel andrael . An example of both

follows:

]



They are very similar yet a little different because F[x] are all the polynomials with a
factor of f(x). Since F[x]} and Z afe division algorithms they have to be principal ideal
domain. By proposition 1.2 Z and F[x] are principal Ideal Domains. We are actually able
to prove this fact. They are similar yet F[x] uses the degree of polynomials f(x) which
would be polynomials of the smallest degree. Corollary 1.3 also shows the relationship of
Z and F[x]. It states if [ Z is an ideal and p & L I=<p> IfI cF[x] and f(x) ¢ I, f(x)
is irreducible, then I = <f(x)>. The ideals like Z are in F[x].

This brings us to the last parallel between F[x] and Z, which is quotient rings. R/ 1
is called a quotient ring. By a preposition if R is a commutative ring and I is and Ideal,
R/I (R mod I) is a commutative ring. The only difference between the two is that F[x] is

congruent to a linear polynomial or constant. An example of both follows:

In conclusion F[x] and Z have many similarities. They have the same basic
structure; so when it comes to some ideas their only difterence is in the process. The fact
is that one is a polynomial, and one is an integer. These are two very different ideas
because one has a variable when the other is just a number. Many of the ideas build upon

each other as well allowing for more parallels between F[x] and Z.



#3.)  The proof of the Extreme Value Theorem is based off of the idea of extreme
values which are the absolute minimum and maximum values of a function. This idea
was built on and is included in the proof. The idea of bounded above meaning there is
nothing in the set bigger than it. If a nonempty set of real numbers is bounded above, then
there exists a least upper bound. So that any upper bound is greater than or equal to it.
Similarly if a nonempty set of real numbers is bounded below, there exists a greatest
lower bound. Bounded means for every m, M such that m <a, <M for every n. This is
saying that m is the greatest lower bound and M is the least upper bound for the function
F(X,) because if the function is bounded the function is found between the greatest lower
bound and the least upper bound. This builds on the idea of monotone, meaning terms are
increasing or terms are decreasing. This also brings up the idea of a sequence or a list of
terms or more generally f: N — R. Knowing that a sequence is an ordered list there can
be other sequences formed from the original, a subsequence. Knowing these ideas we can
then expand on all of them to form bigger ideas or theories. Like the bounded monotone
sequence theorem which says that if {a,} is a bounded, monotone sequence, then {a,}
converges. This theorem means that a function converges or has some limit using the
least upper bound and greatest lower bound. We can build upon this theorem with the
Monotone subsequence theorem, saying that every sequence in the real numbers has a
monotone subsequence. Knowing these facts the Bolzano- Weierstress Theorem for
sequences helps us in the proof. It states that a bounded sequence in the real numbers has
a convergent subsequence. This statement was used along with the proof of the lemma
stating if f: [a, b] — R is continuous, then f(x) is bounded. In order to use this lemma you
need to understand what it means to be continuous. Which means that for every ¢ >0,

there exists a & > 0 such that if \x - c‘ <d, | f(x)- f(c)[ > & . More generally, f: R—>R.

When you compile all these ideas together, the ideas in their proofs or when used
separately you are able to prove the Extreme Value Theorem.

‘



Take home
Abby Dutch

#1.)  You mlght ask what a complex number ¢ is. € is the set of all ordered pairs (a, b),
a,b R or if easier the set of all vectors in R’. The algebraic structure of the complex
numbers is a field. A field is every nonzero element a R is a unit, and R holds all the
properties of a ring. The way a complex number is denoted is by (0, 1) by the symbol 1
and so (a, b) = a + bi. Where “a” is the real part and “b” is the 1 1mag1nary part. The idea of
complex numbers came about when trying to solve equations like XP+1=0=X =-1.
We know here that when trying to solve you cannot have a negative number under a

radical. So we are given the rule i’ = -1 thus, we can now solve X =-1=X=vi. "~
Complex numbers can also use the operations for addition and multiplication
much like the real numbers. Some examples follow:

We define addition as: (a, b) + (¢, d) = (a+c, b+d)

Ex. - .
(1, 21) + (4, 31) or more formally written (1 + 21) + (4 + 31)
Thus,

(1+4,2i+ 31)=(5, 51) formally (5 + 51)

Picture: Ex. (1 —i) + (1 + ¥31)=2+ (V3 - 1)i

T ~. (Yo wse thw Hip te dad et

We define multiplication as: (a, b) * (c, d) = (ac- bd, ad + bc)
Ex.
(1, 21) * (4, 31) or more formally (1 + 21) * (4 + 31)
Thus,
((1)(21) - (21)(31), (1)(31) + (21)(4))
(2i - (6i%), 31 + 8i)
Using the rule i* =-1 (2i + 6, 11i) or more formally 2i + 6 + 11i = 6 + 13i

Among the operations you can perform with complex numbers, you can represent
complex numbers in different forms. One form is polar form. Where & is only defined to
multiples of 2 7 (360 degrees). In this form we have a + bi =1 (cosf + i sind ). Where
a=cosd and b=sin@. To find r in this equation we use the formular = va’ +h* . Then
to find & we use the equation tan6 = b/a. A picture and example follow:



Ex: Geinexal picts

o y |
a+bi=1-1 N
r=J(? +(-D*= V2 | - T/ i
} { X s
tand =-1/1=-7/4 . a 1‘.'1 | : . [a A
/\ i ‘77‘/
a+bi=r(cosf +1sind) '

= J2 (cos(-7/4)+isin(-7/4))

You are also able to multiply in polar form. When we have:
r(cos@ +isin@)* p(cosg +ising)ityieldst* p(cos(6+¢)+isin(8+¢)). An
example follows and a picture:

(1= (1 +330)

veie cool Pact e v pha
- F

Wheve |_( = (o (Cos et sin /‘> o
cnel Lidm= D (cos Yz rlsim 11/3\ ,
. . , .
when W\u\‘\\p\\/‘mg the Hfuwe el 2

(-0 50) = 93 (eos (ar )1 (5in{ %1 %) =

= el Cos Mhny1lsn (1‘/'1'*5\) v cdhlakhon by oo
, {wcioe of
(snhinrs o STvevihngs

e "L‘\(khag @ i by

Another form using corollary 3.4 says if z = r (cos& +1sind ) then,

-
P
2
P

1/z=1/r(cos@ -isinf )=

We are able to use this corollary to prove problems like

|| = 7. Also, corollary 3.4 ( deMoivre’s Theorem) says if z=r (cosé +isiné) then,

Z2 =1 (cosnd +1isinné). We can use this corollary to resurrect the double-angle
formulas of trigonometry. An example follows:
TE 27 COSE + (S\nG,
Do p O . 2 e \
then, COS 20 4 ¢S\ 28 = 27 = (CoSe +0Sine)
= ( CoS? e - S e() + L(stﬂec SR @>
N .
( %Q‘H'li’lg Fhes cesull \u?B ol ng (Cos Gy d \Y\U)J >
One important application of deMoivre’s Theorem is to solve z" = a. This leads us

in to roots of unity or the nth roots of 1. We want to find complex numbers so that
z=r1(cosf +isin@)sothatz'=r"(cosné +isinnd)= 1. To do this we have to us
proposition 3.5 which states, let w=cos 27 /nt+isin2z/nthenl, w, wz, w! are



solutions of z" = 1 (nth roots). Using proposition 3.5 we are able to see that the six roots
of unity are:

w=cosz /3+ising/3="2+ \/E/Zi
wi=cos27 /3+isin27/3=-Y+ J3/2i
w =cos 7 +isinzr =-1

w'=cosdz /3+isindx/3=-Y-+/3/2i
WZZCOSSﬂ/3+isin57r/3=‘/z—\/§/Zi
w =1

A picture:

We can also use complex numbers in solving cube roots. To do so we use the roots of
unity but also combine that with corollary 3.6 which says to leta= p(cosg +ising),

and setb = n\/; (cos¢@ /n -+ 1 sing /n). Then the n solutions of z" = a, are
b, bw, bw’,....bw"". An example follows:

J3-i= 2(cos (-7 /6)+isin(-7/6))
b= 32 (cos(-7 /6/2)+isin(-7/6/2))

b= 32 (cos(-7 / 12) +isin (-7/12))

In conclusion we are able to see that complex numbers have many forms and yet
some are very similar to those for real numbers. We are also able to see that many of the
forms and idea of a root is built upon and expanded. These expanded forms help us solve
many complex problems that we may have not been able to do otherwise.
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